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Abstract
Background Despite their heterogeneity, the current standard preoperative radiotherapy regimen for localized high-
grade soft tissue sarcoma (STS) follows a one fits all approach for all STS subtypes. Sarcoma patient-derived three-
dimensional cell culture models represent an innovative tool to overcome challenges in clinical research enabling 
reproducible subtype-specific research on STS. In this pilot study, we present our methodology and preliminary 
results using STS patient-derived 3D cell cultures that were exposed to different doses of photon and proton 
radiation. Our aim was: (i) to establish a reproducible method for irradiation of STS patient-derived 3D cell cultures 
and (ii) to explore the differences in tumor cell viability of two different STS subtypes exposed to increasing doses of 
photon and proton radiation at different time points.

Methods Two patient-derived cell cultures of untreated localized high-grade STS (an undifferentiated pleomorphic 
sarcoma (UPS) and a pleomorphic liposarcoma (PLS)) were exposed to a single fraction of photon or proton irradiation 
using doses of 0 Gy (sham irradiation), 2 Gy, 4 Gy, 8 Gy and 16 Gy. Cell viability was measured and compared to sham 
irradiation at two different time points (four and eight days after irradiation).

Results The proportion of viable tumor cells four days after photon irradiation for UPS vs. PLS were significantly 
different with 85% vs. 65% (4 Gy), 80% vs. 50% (8 Gy) and 70% vs. 35% (16 Gy). Proton irradiation led to similar 
diverging viability curves between UPS vs. PLS four days after irradiation with 90% vs. 75% (4 Gy), 85% vs. 45% (8 Gy) 
and 80% vs. 35% (16 Gy). Photon and proton radiation displayed only minor differences in cell-killing properties within 
each cell culture (UPS and PLS). The cell-killing effect of radiation sustained at eight days after irradiation in both cell 
cultures.
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Introduction
Soft tissue sarcomas (STS) are a heterogeneous group of 
rare malignant tumors with more than 70 subtypes listed 
in the current World Health Organization (WHO) clas-
sification [1]. Despite their heterogeneity, guidelines still 
recommend the same radiotherapy (RT) regimen for 
all localized high-grade STS subtypes [2–7]. Standard 
therapy comprises preoperative RT in daily fractions of 
1.8-2.0 Gy to a total dose of 50-50.4 Gy followed by wide 
resection [2, 4, 5, 8, 9]. The low incidence and diversity of 
STS make large clinical trials and subtype-specific clini-
cal research particularly challenging [10]. Patient-derived 
3D cell cultures (human organoids) have become a valu-
able tool in the study of human diseases, complement-
ing and in some cases replacing animal studies [11–13]. 
In oncology, 3D cell cultures have been successfully used 
to study tumor development and progression and to 
test drug sensitivity [14–20]. Sarcoma patient-derived 
3D cell cultures (PD3D) represent an innovative tool to 
overcome challenges in clinical research and to conduct 
reproducible subtype-specific analyses on STS [21–24]. 
Recently, Haas et al. used 2D cell lines to test subtype-
specific radiosensitivity of STS [25]. The 14 well-charac-
terized sarcoma cell lines showed striking differences in 
radiosensitivity after a single dose of photon irradiation 
(2–8  Gy). These findings, along with other preclinical 
data from 2D STS cell lines, suggest significant subtype-
specific differences in radiosensitivity [25, 26]. However, 
2D cell lines have important limitations. Forcing cells to 
grow on a 2D culture dish changes cellular morphology 
which leads to altered gene and protein expression and 
changes in cellular behavior compared to the tissue of 
origin [21, 27–30]. These limitations are partially over-
come by PD3D that have a microenvironment similar to 
that of the donor tissue including the spatial organiza-
tion, extracellular matrix, nutrient and oxygen gradients 
that allow tumor cells to have natural cell-cell and cell-
matrix interactions [13, 21, 31].  Three-dimensional cell 
cultures allow the growth of cells in their natural shape 
and show greater genetical and phenotypical similarity 
to the tumors in vivo which also translates into improved 
predictability of the effects of ionizing radiation [32, 33]. 
Moreover, differences in hypoxia and cell radiosensitivity 
between tumor core and border can be visually assessed 
in 3D cell cultures as well [34]. Three-dimensional cell 
culture models can also be used for multi-omics analy-
ses and single cell sequencing to further individualize 

tumor treatment (e.g., by drug sensitivity screenings, 
finding target mutations etc.), which may support clinical 
decision-making [22, 35–39]. To the best of our knowl-
edge, there are no data on subtype-specific responses to 
radiation in STS 3D cell cultures yet. In this pilot study, 
we present our methodology and preliminary results 
using STS PD3D that were exposed to increasing doses 
of photon and proton radiation. We measured tumor cell 
viability at two different time points after irradiation. Our 
aim was: (i) to establish a reproducible method for irra-
diation of STS PD3D and (ii) to explore the differences in 
tumor cell viability of two different STS subtypes exposed 
to increasing doses of photon or proton radiation at two 
different measurement time points.

Methods
Patient-derived 3D STS cell culture
STS PD3D were prepared as previously described [40]. 
Briefly summarized, fresh surgical specimens underwent 
several steps of mechano-chemical dissociation. Subse-
quently, cell aggregates were seeded into 24-well plates 
(Corning, Amsterdam, Netherlands) in matrix-like scaf-
folds and allowed to grow until they started forming 
colonies. After harvesting, the cells underwent pathologi-
cal examination to confirm origin and diagnosis. Culture 
conditions were similar to previously published projects 
with minor modifications [41]. Specifically, matrix-like 
scaffold was supplemented with collagen I (Corning, 
Amsterdam, Netherlands) and culture media was sup-
plemented with PDGF-BB (Shenandoah-Biotechnology, 
Warminster, PA, USA).

In this study, two STS PD3D were used. Both were 
derived from previously untreated high-grade STS (G3 
according to the Fédération Nationale des Centres de 
Lutte Contre le Cancer classification) [42]. One model 
(Sarc-P-53) is derived from a patient with a histopatho-
logically diagnosed G3 undifferentiated pleomorphic 
sarcoma (UPS) who underwent preoperative radioche-
motherapy with 1.8 to 50.4 Gy while the other model 
(Sarc-P-117) is derived from a patient with a G3 pleomor-
phic liposarcoma (PLS) who did not receive RT. To cor-
rectly characterize the tumor models, hematoxylin and 
eosin (H&E) and immunohistochemistry (IHC) staining 
were performed in the original tumor specimen and the 
3D cell culture according to standard clinical protocols 
and reviewed by pathologists (supplementary Figs.  1 
and 2). In preliminary experiments, the growth kinetics 

Conclusions Pronounced differences in radiosensitivity are evident among UPS and PLS 3D patient-derived 
sarcoma cell cultures which may reflect the clinical heterogeneity. Photon and proton radiation showed similar dose-
dependent cell-killing effectiveness in both 3D cell cultures. Patient-derived 3D STS cell cultures may represent a 
valuable tool to enable translational studies towards individualized subtype-specific radiotherapy in patients with STS.
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of the PD3D models with varying number of cultured 
tumor cells and culture media were analyzed to ensure 
irradiations were standardized and performed during 
the exponential growth phase to avoid overgrowth with 
subsequent necrosis of the core due to media exhaustion 
and oxygen gradients. If the control group was reaching 
confluency and thereby exiting the exponential growth 
phase, the results were not considered valid for analysis.

The experimental setup was arranged as previously 
described [18]. Sarcoma PD3D were mechanically disso-
ciated to a single cell suspension. Single cells were mixed 
with a matrix-like scaffold at density 300–500 cells/
µL and plated as 10µL domes in 24-well plates (Corn-
ing, Amsterdam, Netherlands). After polymerization of 
the scaffold, culture media supplemented with 10µM of 
Y27632 (MedChemExpress, Sollentuna, Sweden) was 
added and domes were gently detached from the plate. 
After four days in culture, domes were harvested and 
transported to the radiation facility. In each experiment, 
four domes were left in culture media at the cell culture 
laboratory to control for the effects of transportation. 
After irradiation, domes were transported back to the 
cell culture laboratory, placed back in 24-well plates and 
media was replaced by fresh culture media. After four or 
eight days in culture, PD3D were imaged by Leica DM 
IL LED Fluo microscope (Leica Mycrosystems, Wetzlar, 
Germany) and viability was evaluated using the CellTiter-
Glo assay (Promega, Madison, WI, USA). The intensity 
of luminescence was measured using the SpectraMax 
i3x plate reader (Molecular Devices, San Jose, California, 
USA) 30 min after the addition of the reagent.

Photon irradiation
Samples were transported in 1.5 ml Eppendorf tubes at 
room temperature from the cell culture laboratory to 
the linear accelerator facility. To ensure a homogeneous 
dose accumulation effect, the samples were placed in 
a plexiglass block with drill holes and a plexiglass cover 
plate designed for holding the samples during irradiation 
(supplementary Fig. 3). The holder was equipped with a 
dosimeter for internal dose control. Computed tomog-
raphy scans of the plexiglass holder carrying the samples 
were taken for radiation planning (supplementary Fig. 4). 
Two-field three-dimensional conformal RT (anterior-
posterior 0°, posterior-anterior 180°) were applied. The 
source-isocenter distance was 100  cm. Six MV photon 
radiation with dose rates up to 6 Gy/min were used. Each 
group of samples was irradiated with a single dose of 
either 0 Gy (sham irradiation), 2 Gy, 4 Gy, 8 Gy or 16 Gy 
as confirmed by dosimetric measurements during irradi-
ation. In total, the time for irradiation of samples did not 
exceed 15 min. After irradiation, the samples were trans-
ported back to the cell culture laboratory.

Proton irradiation
The proton irradiation was performed at the ocular beam 
line of the Helmholtz-Zentrum Berlin für Materialien 
und Energie [43]. Standard 1.5ml Eppendorf tubes were 
used for sample transport and irradiation at room tem-
perature. The following experimental setup of the pro-
ton beam line was used: Due to the small field size of the 
ocular beam line, only one Eppendorf tube was irradiated 
at a time, using one small circular field of 25 mm diam-
eter. A 68  MeV proton beam was turned into a spread 
out Bragg peak with a water equivalent range of 23.7 mm 
and a modulation of 22.0 mm for irradiation. The tip of 
the tube containing the samples were positioned in the 
center of the irradiation field in 11.0  mm water equiva-
lent depth. For adequate positioning, a special phantom 
consisting of a 2 mm pre-absorber Lucite plate with a 3D 
printed polylactide (PLA) sample holder of 17.0 mm was 
used. Distal to the sample holder, a Markus ion chamber 
(M23343-4795, PTW-Freiburg, Freiburg, Germany) was 
positioned in 19.8  mm water equivalent depth to mea-
sure the exit dose. Due to the physical characteristics of 
the spread out Bragg peak, the sample dose and the exit 
dose were the same with an error of ± 1% (Fig. 1). A dose 
rate of 3.9–4.1  Gy/min was used to apply the following 
doses based on exit dosimetry: 0 Gy (sham irradiation), 
2 Gy, 4 Gy, 8 Gy, 16 Gy. The entire irradiation procedure 
including set-up and calibration took about 50 min. After 
irradiation, the samples were transported back to the cell 
culture laboratory.

Statistical analysis and graphical representation
Statistical analysis was performed using GraphPad Prism 
v.9.3.1 (GraphPad Software, San Diego, CA, USA). For 
evaluation of the transportation effect, the unpaired 
two-tailed t-test was used. In all other cases, two-way 
ANOVA with Sidak’s multiple comparison for compari-
son of means between two correspondent groups (Figs. 5  
and supplementary Figs.  5 and 6) or Dunnett’s multiple 
comparisons test for comparison of means to the control 
mean (Figs. 3 and 4) were used. Viability was expressed in 
percentage relative to sham irradiation (0 Gy). Bar charts 
were used to display results on the transportation effect 
(Fig. 5). Dose-response measurements were displayed for 
the different experimental set ups (Figs.  3, 4 and 5 and 
supplementary Figs. 5 and 6).

Results
Effect of transportation on cell viability
To determine the effect of transportation from the 
cell culture laboratory to the radiation facilities on cell 
viability (approximately 30 minutes of transport), we 
compared control samples that remained in the labora-
tory to transported samples receiving sham irradiation 
(0 Gy). Irradiations were conducted at the Department 
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of Radiation Oncology at Charité - Universitätsmedizin 
Berlin (photon irradiation) and Helmholtz-Zentrum Ber-
lin (proton irradiation) according to the same protocol. 
No significant differences were found among samples 
in both PD3D (UPS and PLS) on day 4 or day 8, respec-
tively (Fig. 2). Therefore, the viability of the 0 Gy group 
(sham irradiation) was set as 100% in all subsequent 
calculations.

Kinetics and dose-response of tumor cell viability after 
irradiation
In the photon irradiation group four days after irradia-
tion, the number of viable UPS tumor cells were signifi-
cantly reduced in a dose-dependent manner compared to 
sham irradiation (Fig.  3A). The effect increased at eight 
days with almost 50% of cell death when 16  Gy were 
applied. In the proton irradiation group, doses of up to 
8 Gy did not cause a significant reduction of cell viability 

Fig. 2 Effect of transportation on PD3D viability. Viability of UPS cell culture (A) and PLS cell culture (B) samples retained in the cell culture laboratory 
(Control) vs. sham irradiation (0 Gy) after four or eight days of incubation. Mean ± standard error of the mean; ns, not significant; 3 independent experi-
ments with 4 technical replicates in each.

 

Fig. 1 Depth dose curve of the spread out proton Bragg peak. After the Lucite pre-absorber (light grey) the beam enters the measurement chamber. The 
depth dose curve remains steady as it passes through the polylactide sample holder (grey), the Eppendorf tube with soft tissue sarcoma cells (light blue), 
reaches the exit dosimetry (vertical dark grey line at 19.8 mm depth) and displays a steep decline in the Lucite phantom (light grey).
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compared to sham irradiation, although an almost lin-
ear dose-dependent decrease was visible (Fig.  3B). Sig-
nificant cell death levels of approximately 20% were seen 
four days after irradiation seen when 16 Gy were applied. 
Eight days after proton irradiation, the level of cell death 
increased in all dose-groups and reached approximately 
50% in the 16 Gy group.

The PLS tumor cell viability substantially decreased 
with increasing photon radiation doses at day 4 of mea-
surement (Fig. 4A). In the 8 Gy group, 50% of cells were 
eradicated at four days. In the 16 Gy group 65% of cells 
were eliminated at four days. Eight days after irradia-
tion, no significant differences were visible between the 2 
and 4 Gy group compared to the sham irradiation group. 

However, 8 and 16 Gy led to a rapid decline with approxi-
mately 30% cell death in the 8  Gy group and 85% cell 
death in the 16  Gy group. Unfortunately, tumor cells in 
the PLS 0 Gy group were overgrown and confluent after 
8 days which likely affected cell viability measurements. 
The proton irradiation groups showed a significant and 
dose-dependent decline in viability after four days reach-
ing levels above 50% cell death in the 8  Gy group and 
around 65% in the 16 Gy group (Fig. 4B). Proton irradia-
tion groups displayed a sigmoid shape with a plateau at 
2 Gy and a subsequent rapid decline at 4 Gy (85%), 8 Gy 
(25%) and a minimum at 16  Gy (15%) in the eight days 
analysis. Tumor cells in 0 Gy group were overgrown and 
confluent after eight days.

Fig. 4 Dose response and kinetics of cancer cell viability following photon and proton irradiation of PLS (Sarc-P-117). Viability of PLS cell culture after 
four and eight days of incubation following increasing dosages of photon (A) or proton (B) irradiation. Mean ± standard error of the mean; empty circles, 
cells overgrown; *, p < 0.05 vs. sham irradiation (0 Gy) after four days; #, p < 0.05 vs. sham irradiation (0 Gy) after eight days; at least 1 experiment with 4 
technical replicates in each.

 

Fig. 3 Dose response and kinetics of cancer cell viability following photon and proton irradiation of UPS (Sarc-P-53). Viability of UPS cell culture after four 
and eight days of incubation following increasing dosages of photon (A) or proton (B) irradiation. Mean ± standard error of the mean; *, p < 0.05 vs. sham 
irradiation (0 Gy) after four days; #, p < 0.05 vs. sham irradiation (0 Gy) after eight days; at least 1 experiment with 4 technical replicates in each.
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Effect of photon vs. proton radiation on tumor cell viability
In the UPS cell culture group, no significant differences 
in cell viability were visible between photon and proton 
irradiation after four days (supplementary Fig. 5A). Eight 
days after irradiation, there was a slightly higher cell-kill-
ing effect of proton irradiation visible in the 8 Gy group 
(supplementary Fig.  5B). Both showed dose dependent 
decreases in cell viability reaching approximately 50% in 
the 16 Gy groups after eight days.

Different kinetics were evident in the PLS cell culture. 
After four days, the cell-killing effect gradually increased 
with higher doses of irradiation reaching almost 65% 
of eradicated cells in the 16  Gy groups (supplementary 
Fig.  6A). Notably, there were no significant differences 
among photon or proton irradiation. At day eight, both 

groups showed a plateau in low doses and a rapid decline 
reaching a bottom plateau at 16 Gy (90% eliminated cells, 
supplementary Fig. 6B). In the lower doses (4 Gy, 8 Gy), 
photon irradiation displays less cell-killing properties 
than proton irradiation, however both measurement 
points converge at 16  Gy. Both cell cultures were over-
grown at day eight.

Differences in radiosensitivity between UPS and PLS PD3D
The PLS cell culture group showed significantly higher 
radiosensitivity towards photon and proton irradiation 
after four days compared to the UPS cell culture (Fig. 5A 
and C, p < 0.0001). Eight days after irradiation, there were 
no significant differences in response to photon irradia-
tion and a significant difference after proton irradiation 

Fig. 5 Effects of photon and proton irradiation on UPS (Sarc-P-53) vs. PLS (Sarc-P-117). Viability of UPS and PLS cell culture after four (A, C) and eight (B, D) 
days of incubation following increasing dosages of photon (A, B) or proton (C, D) irradiation. Mean ± standard error of the mean; *, p < 0.05 comparison 
between the same dosages of irradiation between UPS and PLS; at least 1 experiment with 4 technical replicates in each.
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(Fig.  5B and D, p = 0.0979 and p = 0.0001, respectively). 
The PLS cell cultures were overgrown at day 8.

Discussion
The current standard RT regimen for localized high-
grade STS is far away from the idea of personalized 
tumor medicine. Instead, all STS subtypes receive the 
same preoperative RT regimen (1.8-2.0 Gy daily to a total 
dose of 50-50.4  Gy) despite clinical and preclinical evi-
dence for subtype-specific differences in radiosensitivity 
[2–4, 6, 7, 9, 25, 44–46]. Three dimensional cell cultures 
have emerged as valuable preclinical models bridging the 
gap between animal models and humans in cancer medi-
cine [11, 47–49]. The challenges in clinical research for 
STS (low incidence, high heterogeneity) are therefore 
met by using 3D patient-derived cell cultures to under-
stand tumor biology and to test drug or treatment effi-
cacy [21, 22].

Herein, we present our pilot data on cell viability after 
photon and proton irradiation for PD3D of high-grade 
STS. The UPS PD3D showed less radiosensitivity after 
four days in all doses and radiation modalities compared 
to the PLS cell culture. While in the UPS cell culture 
16 Gy of photon and proton irradiation barely caused a 
cell-killing effect of 50% after eight days, in the PLS cell 
culture half of the cells were eradicated by 8 Gy (photon 
and proton) only four days after irradiation [6]. These 
findings do correlate with typical clinical outcomes for 
both entities. While both tumors - UPS and PLS - have 
mediocre clinical prognoses compared to other STS enti-
ties, UPS tumors show a higher tendency for metasta-
ses and worse survival outcomes [50–52]. Clinically, the 
high sensitivity of the PLS PD3D was also evident in the 
patient the cells were derived from. The patient received 
preoperative radiochemotherapy with 50.4 Gy in 28 daily 
fractions and surgical resection; the specimen has shown 
distinctly reduced proportions of viable tumor cells of 
10–20%. To what extent the addition of chemotherapy 
has contributed to that effect cannot be assessed retro-
spectively. The UPS patient did not receive RT.

In both cell cultures and radiation modalities, the cell-
killing effect of irradiation sustained after eight days. 
Although the survival measurement points in the 16 Gy 
dosage (photon and proton) of the UPS culture did show 
some degree of flattening at eight days, there was no sign 
of net cell number increase (Fig. 3).

The PLS cell culture on the other hand displayed a more 
dynamic cell turnover. After eight days, the PLS cells in 
the 0 Gy group overgrew in the organoid culture. There-
fore, no valuable conclusions could be drawn from the 
results of the PLS group at eight days. Nevertheless, the 
PLS culture did show remarkable decreases after photon 
and proton irradiation at four days. This strikingly differ-
ent and rather dynamic cell turnover of PLS compared to 

the UPS cells underlines the differences in radiosensitiv-
ity seen among both STS tumor cell cultures [6].

The physical advantages of proton irradiation are the 
characteristic energy deposition peak (‘Bragg peak’), 
behind which the energy drops towards near zero, 
minimizing dose deposition (“exit radiation”) in the tis-
sue behind the Bragg peak [53]. Thereby, protons can 
deliver similar radiation doses to the target with 50–60% 
less integral or total radiation dose compared to photon 
intensity-modulated RT   [54–58]. These normal tissue-
sparing features of proton radiation make them particu-
larly suitable for delicate tumor locations (skull-base, 
spine etc.) and for pediatric patients where the risk for 
late toxicity or radiation-associated malignancy is the 
highest [53, 59–61]. Although there are no large well-
matched trials comparing photon to proton therapy for 
sarcomas yet, many retrospective data analyses and phase 
II trials suggest promising low normal tissue toxicity and 
comparable local tumor control [59, 62–66]. In line with 
these findings, we only observed minimal differences in 
cell-killing properties between photon and proton radia-
tion in both tumor entities at both time points (except for 
the PLS cell culture at eight days, which is not analyzable 
due to cell overgrowth). It may therefore be interesting to 
assess normal tissue side effects irradiation by co-cultur-
ing STS tumor cells with physiological connective tissue 
cells, compare viability and additionally analyze estab-
lished cellular radiation-induced DNA damage response 
markers such as γH2AX after irradiation (photon vs. pro-
ton) at different time points [67, 68].

Our data open up a new subfield of translational sar-
coma research using sarcoma PD3D to individually assess 
radiosensitivity in different STS entities and patients indi-
vidually. The results within our own study were repro-
ducible and stable. A potential limitation of the approach 
is the absence of stromal and immune cells in current 3D 
cell culture models, as immune cells contribute to a vari-
ety of diseases and stromal cells have become important 
targets in cancer drug discovery [30, 69, 70]. However, 
the steady evolution of such multicellular 3D tissue mod-
els with immune cells will most likely lead to new mod-
els that will be able to mimic such complex interactions 
[30, 71]. Another limitation is the small number of two 
STS PD3D used and the lack of regular re-analysis of the 
phenotypic stability of the PD3D. The PD3D were ini-
tially analyzed histopathologically to confirm the diagno-
sis of the patient they were derived from (supplementary 
Figs. 1 and 2). However, the analysis was not repeated to 
assess the maintenance of phenotopic stability as cells 
grew and were passaged. Moreover, certain refinements 
are necessary in our model such as finding the appropri-
ate tumor cell number for the rapidly overgrowing PLS 
culture. Further studies with more STS entities for the 3D 
patient-derived sarcoma cell culture radiosensitivity assay 
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presented herein are warranted to extent our knowledge 
and eventually prepare clinical-translational validation.
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